Analytics for Retail Banks

Become a data-driven marketing expert by mastering concepts around analytics lifecycle, data infrastructure, customer lifecycle and digital trends while going through global retail banking case studies.

Analytics for Retail Banks

Course Description

The Analytics for Retail Banks course is designed to provide the requisite knowledge and skills to become a data-driven marketer. It starts with fundamental concepts around the analytics lifecycle, data requirements and customer lifecycle to advanced topics around digital experiences, event-based marketing, omni-channel marketing and campaign analytics, among others. Analytics practitioners are in extreme demand, especially in Retail Banks. This course could help towards these objectives: 1. For professionals wanting to enter the retail banking space in analytics at a senior level. 2. For senior professionals at Retail Banks who want to enhance their career prospects by moving into analytics. 3. For Business heads and CXOs to help understand the applications of analytics.   Assigments Each class has practical as... Read More »

The Analytics for Retail Banks course is designed to provide the requisite knowledge and skills to become a data-driven marketer. It starts with fundamental concepts around the analytics lifecycle, data requirements and customer lifecycle to advanced topics around digital experiences, event-based marketing, omni-channel marketing and campaign analytics, among others.

Analytics practitioners are in extreme demand, especially in Retail Banks. This course could help towards these objectives:
1. For professionals wanting to enter the retail banking space in analytics at a senior level.
2. For senior professionals at Retail Banks who want to enhance their career prospects by moving into analytics.
3. For Business heads and CXOs to help understand the applications of analytics.

 

Assigments

Each class has practical assignments which shall be finished before the next class and helps you to apply the concepts taught during the class.

Read Less
Course Outcomes:
  • Understand the applications of data-driven marketing across the customer life cycle at retail banks.
  • Understand the data infrastructure and the analytics set up required to carry out data-driven marketing.
  • Understand the nuances of how incoming, outgoing and interactive channels impact data-driven programs.
  • Understand and design event-based marketing programs and Contextual campaigns at retail banks.
  • Understand how to use analytics to improve campaign performance.
  • Get an overview of analytics best practices in retail banks.
  • Understand the practical issues that one will encounter while implementing data-driven marketing programs at retail banks.
  • Be aware of how data driven marketing is done across banks of different countries.
Course Details:

Target Audience

The course is designed for all those who want to understand the application of analytics especially in the retail banking context.

Access Timeframe

You get lifetime access to Learning Management System (LMS) where presentations, quizzes, installation guide & class recordings are there.

Prerequisites

The pre-requisite for this course includes a basic understanding of marketing processes, familiarity with the banking domain and high school mathematics.
Certificate Info:

Type of Certification

Certificate of Completion

Format of Certification

Digital

Professional Association/Affiliation

edureka certification has industry recognition and we are the preferred training partner for many MNCs e.g.Cisco, Ford, Mphasis, Nokia, Wipro, Accenture, IBM, Philips, Citi, Ford, Mindtree, BNYMellon etc.

Method of Obtaining Certification

At the end of your course, you will work on a real time Project. You will receive a Problem Statement along with a dataset to work. Once you are successfully through with the project (reviewed by an expert), you will be awarded a certificate with a performance based grading. If your project is not approved in 1st attempt, you can take additional assistance to understand the concepts better and reattempt the Project free of cost.

Course Outline

Learning Objectives : In this module you will understand the scope of analytics applications at a retail bank and the underlying processes involved. You will also learn about the various activities around analytics. Develop a sound foundation of analytics frameworks. Learn about best practices in analytics and also understand latest trends around analytics.

Topics :

  • Analytics objectives
  • Analytics data stack
  • Analytics lifecycle
  • Analytics process cycles
  • Analytics algorithms stack
  • Data visualization
  • Context awareness
  • Analytics best practices
  • CRISP-DM methodology

Learning Objectives : In this module you will understand different stages of the customer lifecycle, Marketing challenges across different stages of the customer lifecycle, Best practices in managing these challenges, How to use analytics to address these challenges and Undertake a case study of a Taiwanese bank.

Topics :

  • Retail banking objectives
  • Customer lifecycle
  • Analytics applications across the customer lifecycle
  • Levers
  • Analytics objectives and trade-offs
  • Segment marketing
  • Partner agencies
  • ROI models

Learning Objectives : In this module you will understand the various types of data needed at a retail bank, Infrastructure required to manage data and learn about challenges and best practices in managing data.

Topics :

  • Challenges of big data
  • Different types of data
  • Data life cycle
  • Logical data models
  • Data cleansing
  • Unstructured data processing
  • Single view of the customer
  • Single row per customer
  • Platform components required to process data
  • Requisite processes

Learning Objectives : In this module you will understand the various types of channels and their implications on data-driven marketing. Learn about customer touch-points and how they can be leveraged. Appreciate best practices around analytics and channel management.

Topics :

  • Channel purposes
  • Types of channels
  • Channel throughput
  • Channel infrastructure
  • Campaign execution challenges
  • Omni-channel perspective
  • Use of social media channels

Learning Objectives : In this module you will understand how to run data-driven acquisition programs, Best practices around analytics in the acquisition space, understand the differences between prospecting and onboarding and also learn about best practices around digital onboarding. Carry out a case study of an Indonesian bank.

Topics :

  • Prospecting
  • Onboarding
  • Analytics capabilities for prospect analytics
  • Response models
  • Activation strategies
  • Digital activation best and worst practices

Learning Objectives : In this module you will understand how to run data driven usage management programs, Explore best practices around analytics in the usage management space. Learn about challenges while implementing offers. Perform a case study of a Thai bank and Chinese bank.

Topics :

  • Analytics capabilities required
  • Sample usage increase programs
  • Offer glut
  • Offer fulfillment and tracking

Learning Objectives : In this module you will understand the customer journey and define customer experience. Learn about the benefits of having a good customer experience, How to run data-driven customer experience management programs, best practices around analytics in the customer experience management space and also understand best practices of customer experience in digital banking.

Topics :

  • Customer journey and analytics
  • Customer experience processes
  • Customer trust principles
  • Analytics capabilities required for customer experience
  • Analytics capabilities required for customer satisfaction
  • Analytics for the end customer
  • Personal financial management
  • Technology shifts
  • Design thinking
  • Testing options
  • Digital customer experience sensors and actuators

Learning Objectives : In this module you will understand how to run data driven upsell and cross sell programs. Learn about best practices of analytics in the upsell and cross sell space, tactics to increase customer penetration, approaches to Bancassurance perform a case study of an Indian bank and Chinese bank.

Topics :

  • Upselling and cross selling processes
  • Tactics to increase customer penetration
  • “Incoming call is your best bet”
  • Next best offer analytics
  • Case study: Card upgrade program
  • Case study: Cross selling credit cards to savings accounts
  • Case study: Cross Selling mutual funds to savings account customers
  • Cross sell between corporate and individual accounts
  • Bancassurance approaches

Learning Objectives : Understand how to run data-driven retention and loyalty management programs, Approaches to building retention strategies, trends in social media marketing. Learn about best practices of analytics in the retention and loyalty management space. Undertake a case study of an Indian bank.

Topics :

  • Retention and loyalty processes
  • Factors affecting
  • Customer loyalty
  • Analytics capability for loyalty analytics
  • Attrition types and retention strategies
  • Case Study: Attrition model
  • Advocacy analytics
  • Social Media Marketing

Learning Objectives : Understand practical challenges in implementing data driven programs. Learn about basic principles driving IT infrastructure of digital banking and also you will learn how to manage these challenges.

Topics :

  • McKinsey core beliefs on big data
  • Data privacy
  • IT principles for digital banking
  • Architecture blocks for digital banking
  • “Know your business”
  • Data preparation groundwork
  • “Analytics is more art than science”
  • Common improvement areas at banks

DON'T HAVE TIME?

We can send you everything you need to know about this course through email.
We respect your privacy. Your information is safe and will never be shared.